Taiwan's academic interest in agricultural sciences began in earnest about 40 years ago with a breeding program in Taiwan's local rice varieties. Since then, various life science research institutes have worked on a wide variety of agricultural projects including crop plant improvement, aquaculture, and others. At Academia Sinica, the Agricultural Biotechnology Research Center, the Institute of Plant and Microbial Biology, the Institute of Cellular and Organismic Biology, and the Institute of Molecular Biology have, to varying degrees, developed research projects and graduate programs to address specific issues in specialized areas of agricultural biology.

The Taiwan International Graduate Program (TIGP) in Molecular and Biological Agricultural Sciences (MBAS) was founded by Academia Sinica in 2003, and is an interdisciplinary program that works in close partnership with the National Chung Hsing University (NCHU). This program has built a research and learning environment that can inspire young graduate students to engage in innovative studies in bio-agriculture. From the outset, the intention of the program has been to train students to employ multi-disciplinary approaches to address specific and important questions in biotechnology and to develop emerging technologies or experimental systems that can contribute to future agricultural biotechnology research and development.

The MBAS graduate program pursues basic and applied research in the bioagricultural sciences that has the potential to lead to new platform technologies or develop into novel systems and industrial applications in biotechnology. A key emphasis of the program is to promote “translational” research whenever possible, particularly when specific new breakthrough findings in basic research can be readily and efficiently advanced into experimental research projects within the program, and are demonstrated to have the potential to be transformed or engineered into platform technology systems and industrial applications for agriculture. Aside from highlighting innovative research, the program also tries to provide networking opportunities and information systems to satisfy the communication and technological needs of the agricultural and business sectors of the biotechnology industry in Taiwan and worldwide.

Faculty and Staff

Academia Sinica

Agricultural Biotechnology Research Center

Yee-Yung Charng
Ph.D., Dept. of Biochemistry, Michigan State University, USA
Molecular genetics and biochemistry of plant stress response

Ho-Ming Chen
Ph.D., Molecular and Biological Agricultural Sciences,
Taiwan International Graduate Program, Taiwan
Plant small RNA biogenesis and function

Yet-Ran Chen
Ph.D., Institute of Chemistry, National Taiwan University, Taiwan
Plant peptide hormones signaling involved in the development and stress defense;
MS-based proteomics and metabolomics
Tzyy-Jen Chiou
Ph.D., Physiological and Molecular Plant Biology Program, University of Illinois, USA
MicroRNA-mediated gene regulation; phosphorus nutrient

Pei-Wen Hsiao
Ph.D., Endocrinology and Reproductive Physiology Program, University of Wisconsin–Madison, USA
Cancer biology; herbal medicine effects on cancer metastasis; signaling and epigenetic controls of gene expression; influenza VLP vaccine

Shu-Mei Liang
Ph.D., Biochemistry, University of Arkansas for Medical Sciences, USA
Immunology in innate immunity; vaccine research; protein therapeutics for cancers

Ming-Che Shih
Ph.D., Genetics, University of Iowa, USA
Plant molecular biology and functional genomics

Lie-Fen Shyur
Ph.D., Dept. of Agricultural Chemistry, National Taiwan University, Taiwan
Phytoagents R&D for inflammatory and cancer diseases; metabolomics; protein engineering of industrial enzymes

Ning-Sun Yang
Ph.D., Biochemical Genetics, Michigan State University, USA
Phytomedicines; gene and cell-based vaccine; transgenic biotechnology

Wen-Chin Yang
Ph.D., Institut de Cancerologie et d’Immunologie de Marseille, Universite Mediterranee, France
T cell biology; signal transduction; knockout/transgenic mice; herbal medicine study

Hsin-Hung Yeh
Ph.D., Dept. of Plant Pathology, University of California, Davis, USA
Plant virology; plant pathology; molecular biology

Kuo-Chen Yeh
Ph.D., Plant Biology Graduate Group, University of California-Davis, USA
Heavy metal homeostasis in plants and biotechnological applications

Institute of Plant and Microbial Biology

Long-Fang Chen
Ph.D., Agronomy, Iowa State University, USA
Plant developmental phases; omics profiling

Wan-Hsing Cheng
Ph.D., Plant Molecular and Cellular Biology Program, University of Florida, USA
Sugar sensing and signaling; sugar signal interaction with phytohormones (ABA and ethylene); ABA biosynthesis and signaling

Hsiu-An Chu
Ph.D., Biochemistry, University of California-Riverside, USA
Structure and molecular mechanisms of the photosystem II reaction center

Hong-Yong Fu
Ph.D., Plant Molecular Biology, Texas A&M University, USA
Function and mechanism studies for critical components of the ubiquitin/26S proteasome system

Tuan-Hua David Ho
Ph.D., Biochemistry, Michigan State University, USA
Hormone and stress signaling; function of stress proteins; lignocellulose degrading enzymes

Ming-Hsiun Hsieh
Ph.D., Biology, New York University, USA
Regulation of chloroplast and mitochondrial gene expression

Yue-le Hsing
Ph.D., Dept. of Agronomy, University of Illinois, USA
Rice genomics study and research on soybean seed maturation proteins

Guang-Yuh Jauh
Ph.D., Dept. of Botany and Plant Sciences, University of California-Riverside, USA
Genes/proteins and potential autophagic machinery involved in plant cell

Kazue Kanehara
Ph.D., Kyoto University, Japan
The cell systems in plants

Chih-Horng Kuo
Ph.D., Genetics, University of Georgia, USA
Microbial diversity; genome evolution

Erh-Min Lai
Ph.D., Plant Pathology, University of California-Davis, USA
Molecular mechanisms of plant-pathogen interactions

Na-Sheng Lin
Ph.D., Dept. of Plant Pathology, University of Nebraska-Lincoln, USA
Molecular interactions of plant viruses, satellite RNA and plants

Yuki Nakamura
Ph.D., Tokyo Institute of Technology, Japan
Lipids and development

Sunny Wan-Sheng Lo
Ph.D., Molecular Genetics Program, Dept. of Biological Sciences, St. John’s University, USA
Epigenetics and regulatory mechanism of chromatin dynamics

Wolfgang Schmidt
Ph.D., Dept. of Biology, Univ. of Oldenburg, Germany
Systems biology; molecular plant nutrition

Shih-Long Tu
Ph.D., Grad. Ins. of Life Science, National Defense Medical Center, Taiwan
Biosynthesis of phytochrome chromophore in higher plants

Paul E. Verslues
Ph.D., University of California-Riverside, USA
Proline metabolism and its role in stress resistance, osmoregulation and osmotic adjustment, abscisic acid signaling and metabolism
Chao-Wen Wang
Ph.D., Cell and Developmental Biology,
University of California-Davis, USA
Organelle architecture; dynamics and biogenesis

Chung-Ju Wang
Ph.D., Department of Botany, National Taiwan University,
Taiwan
Studies of plant meiosis and anther development

Long-Chi Wang
Ph.D., Molecular Genetics, Albert Einstein College of Medicine,
USA
Molecular mechanism in the regulation of ethylene biosynthesis and signaling

Shu-Hsing Wu
Ph.D., Plant Biology, University of California-Davis, USA
Light-mediated gene expression and signal transduction in Arabidopsis

Tien-Shin Yu
Ph.D., Grad. Ins. of Life Science, National Defense Medical Center, Taiwan
Function and molecular mechanism of RNA long-distance trafficking

Institute of Cellular and Organismic Biology

Chi-Yao Chang
Ph.D., Ins. of Life Science, National Tsing Hua University,
Taiwan
Molecular biology; virology; cellular biology

Jyh-Yih Chen
Ph.D., Institute of Zoology, National Taiwan University,
Taiwan
Molecular biology; molecular Immunology

Pinwen Peter Chiou
Ph.D., Microbiology, Oregon State University, USA
Fish immunology; fish viral pathology

Hwei-Jan Hsu
Ph.D., Institute of Life Science, National Defense Medical Center, Taiwan
Developmental biology; stem cell biology

Cho-Fat Hui
Ph.D., Dept of Molecular Sciences, University of Warwick, UK
Molecular biology

Meng-Chao Yao
Ph.D., Dept. of Biological Science, Washington University-St. Louis, USA
Gene amplification; DNA rearrangements and chromosome instability in Eukaryotes

Yu-Chan Chao
Ph.D., Dept. of Entomol., Univ. of Arkansas, USA
Protein engineering and molecular manipulation of Baculovirus

Jy-Chian Chen
Ph.D., Dept. of Biological Science, Washington University-St. Louis, USA
Experimental evolution and genomic analysis of yeast mating preference and genetic buffering

Institute of Molecular Biology

Yu-Chan Chao
Ph.D., Dept. of Entomol., Univ. of Arkansas, USA
Protein engineering and molecular manipulation of Baculovirus

Yung-Feng Liao
Ph.D., Dept. of Biochemistry and Molecular Biology, University of Georgia, USA
Neuroinflammation in Alzheimer’s disease, notch signaling in neural stem cell development

Kinya G. Ota
PhD. Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), Japan
Zoology; evolutionary developmental biology; marine biology

Yi-Ching Lee
Ph.D., Graduate Institute of Life Science, National Defense University, Taiwan
Genetics; cellular and molecular biology

Yi-Hsien Su
Ph.D., Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, USA
Developmental biology; gene regulatory networks; systems biology

Jen-Leih Wu
Ph.D., Biochemistry and Molecular Biology, University of Arkansas, USA
Molecular biology, molecular virology, developmental biology

Institute of Molecular Biology

Yu-Chan Chao
Ph.D., Dept. of Entomol., Univ. of Arkansas, USA
Protein engineering and molecular manipulation of Baculovirus

Jy-Chian Chen
Ph.D., Dept. of Biological Science, Washington University-St. Louis, USA
Experimental evolution and genomic analysis of yeast mating preference and genetic buffering

Meng-Chao Yao
Ph.D., Dept. of Biological Science, Washington University-St. Louis, USA
Gene amplification; DNA rearrangements and chromosome instability in Eukaryotes

Su-May Yu
Ph.D., Dept. of Plant Biology, University of Arkansas, USA
Sugar signaling and regulation in plants

Institute of Molecular Biology

Yu-Chan Chao
Ph.D., Dept. of Entomol., Univ. of Arkansas, USA
Protein engineering and molecular manipulation of Baculovirus

Jy-Chian Chen
Ph.D., Dept. of Biological Science, Washington University-St. Louis, USA
Analysis of carbohydrate metabolism mutants of Arabidopsis

Institute of Molecular Biology

Yu-Chan Chao
Ph.D., Dept. of Entomol., Univ. of Arkansas, USA
Protein engineering and molecular manipulation of Baculovirus

Jy-Chian Chen
Ph.D., Dept. of Biological Science, Washington University-St. Louis, USA
Analysis of carbohydrate metabolism mutants of Arabidopsis
Jun-Yi Leu
Ph.D., Dept. Molecular & Cellular, Developmental Biology, Yale University, USA
Experimental evolution and genomic analysis of yeast mating preference and genetic buffering

Meng-Chao Yao
Ph.D., Dept. Biology, University of Rochester, USA
Gene amplification; DNA rearrangements and chromosome instability in Eukaryotes

Su-May Yu
Ph.D., Dept. of Plant Biology, University of Arkansas, USA
Sugar signaling and regulation in plants

Biodiversity Research Center
Wen-Hsiung Li
Ph.D., Mathematics and Genetics, Brown University, USA
Evolutionary genomics; molecular evolution; bioinformatics; computational biology; population genetics; human genetics

Sen-Lin Tang
Ph.D., Dept. of Microbiology and Immunology, University of Melbourne, Australia
Virology; archaeal biology; microbial genomics; computational biology

Genomics Research Center
Tien-Hsien Chang
Ph.D., Molecular Biology, State University of New York at Buffalo, USA
Molecular genetics and genomics of mRNA metabolism

Tsung-Lin Li
Ph.D., Chemistry, University of Cambridge, UK
Natural product chemistry; microbial pathogenicity

Chi-Ming Liang
Ph.D., Pharmacology, University of Arkansas for Medical Sciences, USA
Immunology; biochemistry; pharmacology

Chi-Huey Wong
Ph.D., Chemistry, Massachusetts Institute of Technology, USA
Chemical biology; drug discovery

Institute of Biological Chemistry
Chun-Hung Lin
Ph.D., Chemistry, Scripps Research Institute, USA
Drug discovery; glycochemistry; glycobiology; enzymology

Andrew H.-J. Wang
Ph.D., Chemistry, University of Illinois at Urbana-Champaign, USA
Structural proteomics; drug design

National Chung Hsing University
i-Fang Linda Chang
Ph.D., Dept. of Horticulture, Purdue University, USA
Molecular plant stress biology; plant biotechnology; molecular biology of plant-pathogen interactions

Hong-Lay Chen
Ph.D., Dept. of Civil Engineering, University of California-Berkeley, USA
Bio-engineering; environmental engineering; bio-environmental management; bio-environmental medicine

Liang-Jwu Chen
Ph.D., Dept. of Plant Molecular Biology, University of Illinois, USA
Plant molecular biology; chloroplast genetic engineering; functional genomics

Chuan-Mu Chen
Ph.D., Dept. of Animal Science, National Taiwan University, Taiwan
DNA methylation and imprinting in developmental embryo; transgenic animal technology

Yen-Wei Chu
Ph.D., Grad. Ins. of Life Sciences, National Defense University, Taiwan
Plant functional genomics; plant molecular biology; postharvest biotechnology

Tony J. Fang
Ph.D., Dept. of Food Science and Technology, The Ohio State University, USA
Food microbiology; fermentation biotechnology; HACCP, CNLA

Ming-Hung Ho
Ph.D., Biochemical Sciences, National Taiwan University, Taiwan
Function and structure study of the relationship between nucleocapsid protein and RNA of influenza virus
Jenn Wen Huang
Ph.D., Plant Pathology, University of Georgia, USA
Ecology and integrated management of plant pathogens

Mu-Chiou Huang
Ph.D., Dept. of Animal Science, National Taiwan University, Taiwan
Animal breeding and genetics; molecular biology

Hui-Chih Hung
Ph.D., Life Sciences, National Defense Medical Center, Taiwan
Structure and function of proteins

Hau-Hsuan Hwang
Ph.D., Dept of Biological Sciences, Purdue University, USA
Molecular mechanism of agrobacterium-mediated plant transformation process

Fuh-Jyh Jan
Ph.D., Dept. of Plant Pathology, Cornell University, USA
Plant virology; diagnosis of plant virus diseases; plant biotechnology

Chien-Chen Lai
Ph.D., Analytical Chemistry, National Taiwan University, Taiwan
Mass spectrometry; analytical biochemistry; proteomics; clinical screening; instrumental analysis; clinical chemistry

Wei-Ming Leu
Ph.D., Ins. of Biochemistry, National Yang-Ming Medical College, Taiwan
Molecular biology; biochemistry

Jyung-Hurng Liu
Ph.D., Life Science, National Defense Medical Center, Taiwan
Structural bioinformatics; X-ray crystallography

Meng-Hsiao Meng
Ph.D., Michigan State University, USA
Protein engineering

Der-Syh Tzeng
Ph.D., Dept. of Plant Pathology, University of California-Davis, USA
Physiological and molecular plant pathology; free radical chemistry

Min-Ying Wang
Ph.D., University of Maryland-College Park, USA
Protein production and purification; biochemistry engineering

Sheng-Yang Wang
Ph.D., Dept. of Forestry, National Taiwan University, Taiwan
Natural product chemistry; wood chemistry

Chang-Hsien Yang
Ph.D., Genetics Graduate Group, University of California-Davis, USA
Plant molecular biology; plant molecular genetics

Jeng-Tze Yang
Ph.D., Dept. of Entomology, National Chung Hsing University, Taiwan
Insect taxonomy and biodiversity; insect acoustics

Shyi-Dong Yeh
Ph.D., Dept. of Plant Pathology, Cornell University, USA
Molecular studies on papaya ringspot potyvirus; watermelon tospovirus, control of plant viruses by transgenic approaches.

Research Topics
The MBAS graduate program focuses its research projects and themes on regional needs or issues in agriculture; for example, sub-tropical crop or flower plant systems, major infectious diseases of pig or chicken farms, warm water marine products, and the herbal plant systems of Chinese traditional medicine. The program encourages students to develop strong reasoning, logical thinking, and decision-making capabilities to work on strategic research in biotechnology. Within these themes and research specialties, five research areas have been defined and are actively pursued. These are:
- Plant Sciences and Biotechnology
- Molecular Virology and Vaccine Technology for Agricultural Applications
- Enzyme Technology in Bio-Agricultural Applications
- Phytochemistry and Herbal Medicine
- Microbial Genetics and Genomics

Curriculum
1. Core Courses:
Students taking the Agricultural Sciences course of study are required to take two of the four core courses below:
(1) Molecular and Cellular Approaches for Biotechnology
(2) Advanced Plant Biology
(3) Advanced Animal Biology
(4) Agricultural Microbiology
These courses have been designed to cover the basic principles of biochemistry, molecular biology, microbiology and also cell biology, application of transgenic technology in modern biotechnology as well as providing broad experience in the agricultural sciences.
- Seminars and Symposia: four seminar credits (one credit per semester) have to be taken during the first two years of the Ph.D. program.
- Laboratory Rotations: Students are required to participate in at least two laboratory rotations either at Academia Sinica or at NCHU, within the MBAS program during the first year.

2. Elective Courses:
- Plant Reproductive Biology
- Biomolecular Analysis and Engineering
- Emerging Vaccine Technologies
- Phytochemistry and Herbal Medicine
- Plant Genetics and Genomics
- Principles and Methods in Plant Biology Research
- Special Topics in Biological Sciences and Biotechnology I, II, III, IV (short-term course)
- Seminars in Biological Sciences I & II
- Other courses: Elective courses offered by other programs that are part of TIGP (with a maximum 6 credits) or selected courses offered at National Chung Hsing University.

Note: All courses are conducted in English

3. Chinese Language:
In order to help in everyday communication with the local people, international students are required to take a one year course in Mandarin Chinese

1. Course work: Students are required to complete the core courses during the first two years of study. Total credits to be taken to complete the MBAS Ph.D. program are as follows:

<table>
<thead>
<tr>
<th>Courses</th>
<th>18 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 core courses + 12 elective courses</td>
<td></td>
</tr>
<tr>
<td>* A maximum 6 credits from courses from other TIGP programs will be granted for graduation.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thesis preparation</th>
<th>12 credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seminars</td>
<td>4 credits</td>
</tr>
<tr>
<td>Rotations</td>
<td>2 credits</td>
</tr>
<tr>
<td>Total:</td>
<td>36 credits</td>
</tr>
</tbody>
</table>

Students enrolled as Master in the first year are required to take a total of 48 credits for graduation.

2. Qualifying Exam for Ph.D. Candidacy: Students have to take the first qualifying exam before the end of the second academic year and to pass the qualifying examination before the end of the fifth semester. The student can choose either non-thesis or thesis qualifying exam for the advancement of Ph.D. candidate, and the decision needs to have the thesis advisor's consent. An original research proposition for thesis or non-thesis-related research and an oral defense of the written proposal are required. The proposal should include a clear outline of goals and specific aims of the proposed research, and should provide a description of the issues to be resolved within the broad scientific context of the field. One make-up examination is permitted if the student fails the first examination.

3. Thesis Progress Report (optional): Research advisors to supervise students' doctoral thesis research are selected before the end of the second year. After the requirements of the qualifying exam have been satisfied, a thesis advisory committee which convenes annually may be constituted by the research advisor to guide the student with his/her doctoral research.

4. Thesis Preparation and Defense: Upon completion of thesis research, the student must fulfill the minimum requirements of article publication(s) and also obtain the thesis advisor's consent to apply for oral thesis defense. The student must deliver a Ph.D. thesis open seminar within a month after passing the oral defense.

Admission to the Ph.D. Program

The MBAS graduate program Admission Committee considers all applicants for admission on an individual basis. Admission decisions are based on a number of factors, such as candidate's academic background, statement of purpose, letters of recommendation and relevant work experience. The appropriateness of the student applicant's study goal to the program will also be considered.

Requirements for Admission

1. Academic Records and Degree Certificates: Applicants are required to submit official records and
certificates from each academic institution attended after senior high school. Official records must either be the original documents issued by the institution, which bear the original stamp or seal of the issuing institution and the signature or signature stamp of the appropriate authorizing official, or duplicate copies that are certified by a university officer.

The records must be issued in the original language and accompanied by English translations prepared by the issuing institution. If English translations are not available from the institutions issuing your records, you may have a translation prepared by a government translator or an official translator. They must state that this is a complete and exact word-for-word translation of the original. The translator's statement should be prepared on the letterhead of the translator's institution. Translators must sign their statements in ink and indicate their title. If possible, translators should also use the stamp or seal of their institution.

Academic records must show the dates of your enrollment, all subjects or courses taken, units, credits per hour, and grades earned in each subject. If rank is determined by the results of comprehensive examinations, records should show the examination date and your scores, rank, class, and division. All records must include a complete description of institutional grading scales or other standards of evaluation with maximum grades and minimum marks indicated. If official academic records issued by your institution do not list the courses or subjects studied in preparation for comprehensive examinations or identify the topics on which you were examined, you should prepare two copies of course descriptions or lists of lectures, seminars, or laboratory periods attended during the academic year. Wherever possible you should include hours per week devoted to each subject and marks earned in that subject. A university officer or the supervisor of your studies should certify that such course descriptions or lists are complete and accurate.

2. Statement of Purpose or Research Plan:
A brief statement of the applicant's scientific and professional interests and objectives, as well as the applicant's career goals are essential elements in the statement. Report the applicant's results on any research in progress, if applicable. This statement must be written in English by the applicant, and should not exceed 2 pages.

3. Letters of Recommendation:
At least three letters of recommendation are required. Letters should be submitted in sealed envelopes with signatures of the reference across the seal.

4. English Proficiency Requirement:
Students from non-English-speaking countries are expected to read, write, comprehend, and speak English in order to be admitted for graduate study. Applicants whose first or native language is not English are required to take a test of English proficiency as part of the application procedure. One of the following language test scores must be provided for application. Please note that test scores submitted must be taken within the past two years. Applicants should ensure that the test score(s) be sent to the TIGP Admissions Office prior to the application deadline.

Although the English proficiency requirement for admission may vary in respective programs, the recommended requirements are as follows:

1. TOEFL: A total score of 79 on internet-based (TOEFL-iBT), 213 on computer-based TOEFL or 550 on paper-based TOEFL is strongly recommended as the minimum admission requirement for all programs. Please note that institutional TOEFL will not be accepted, only ETS International TOEFL will be accepted.

2. IELTS: A minimum overall Band Score of 5.5 on the Academic Test of International English Language Testing System (IELTS) taken within the past two years is required.

3. GEPT: In addition to TOEFL and IELTS, applicants in Taiwan may take the General English Proficiency Test (GEPT), administered by the Language Training and Testing Center. Under this option, applicants must submit their high-intermediate level certificate with the application.

* Exemption from the English proficiency requirement
The test of English proficiency can be exempted for applicants graduated from universities where English is the primary language of instruction with at least two year’s duration of study, if the applicants provide an official certification issued by the Office of Registrar.

5. The Graduate Record Examination (GRE):
All applicants are strongly encouraged to submit GRE's General Test scores to be evaluated for admission. An advanced Subject Test in biochemistry, chemistry, biology, cell and molecular biology, or physics is also highly recommended.

6. Applicant's published paper(s) will be useful for admission.
Admission will be executed in two rounds. For the first round of admission, the application deadline will be on January 31st every year for further consideration. The second deadline for all applications will be on March 31st every year and the final decision to all applicants will be made and formally announced in June.

Application can be submitted through the on-line application system (recommended) http://db1x.sinica.edu.tw/tigp/index.php or by post to: Admissions Office Taiwan International Graduate Program No. 128, Sec.2, Academia Road, Nankang, Taipei 11529 Taiwan

The submitted application materials will not be returned to applicants under any circumstances. The complete application materials should be received by TIGP before March 31.
Student Status and Degree Conferral Policy

Based on the Regulations of the Ministry of Education in Taiwan, students will officially register with our partner university i.e. Graduate Institute of Biotechnology at National Chung Hsing University. Upon completion of the program, each student will be conferred a Ph.D. degree by the partner university and a certificate jointly signed by the President of Academia Sinica and the Director of TIGP.

Cost of Study

The payment of tuition fees (basic fee + credits fee, about NT$ 27000/US$ 900 per semester) is due after school registration.

Fellowship and Stipends

TIGP-MBAS will provide the fellowship support for all graduate students for the first year. All second and third year students are required to apply for the fellowship through an evaluation system during summer. The stipend levels are NT$34,000 (about US$1,133) per month. In subsequent years, the financial support may be provided by the students’ thesis advisors; however, the amount will not be guaranteed to be the same as TIGP fellowship.

Medical Insurance

Six months after the student receives the Alien Resident Certificate (ARC), the student will be qualified for Taiwan’s National Health Insurance Program. The students are expected to pay the same premium (about NT$749/US$25 per month) as all the Taiwan citizens and will be entitled to the same medical coverage. The medical insurance will be added in the tuition bill.

Housing and Living Costs

Options include on-campus housing and off-campus housing. On-campus self-catering student dormitory providing single study bedrooms is available to TIGP students at reasonable costs (for details please visit our website at: http://tigp.sinica.edu.tw/housing.html) Off-campus private housing is generally more expensive. Rents for off-campus flats with 2-3 rooms range from NT$ 12,000 - 20,000 (US$ 400 – 670, facility expenses excluded) per month.

Meals are available at the Activity Center Cafeteria, the Café, the Chinese Restaurant, and the Western Restaurant at modest costs. Various types of local cuisines are also available at off-campus cafeterias and restaurants within walking distance and at affordable costs.

Correspondence and Information

For general information concerning TIGP, please contact:

Ms. Huan-Yi Shen
Administrative Assistant
Taiwan International Graduate Program
Academia Sinica, Taiwan
E-mail: tigp@gate.sinica.edu.tw
Tel.: 886-2-2789-8050 Fax: 886-2-2785-8944

For information concerning this program, please contact:

Dr. Kuo-Chen Yeh
MBAS Program Coordinator
Agricultural Biotechnology Research Center
Academia Sinica, Taiwan
E-mail: kcyeh@gate.sinica.edu.tw
Tel.(Fax): 886-2-2787-2056

Ms. Jennifer Wu
MBAS Program Assistant
Agricultural Biotechnology Research Center
Academia Sinica, Taiwan
E-mail: mbastigp@gate.sinica.edu.tw
Tel.(Fax): 886-2-2652-2928

Our mailing address:
Taiwan International Graduate Program
Academia Sinica, Taiwan
128 Academy Road, Section 2
Nankang, Taipei 115
Taiwan, ROC

Websites information:
Taiwan International Graduate Program
– Molecular and Biological Agricultural Sciences:
http://abrc.sinica.edu.tw/mbas/